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Abstract 

The study of different neurotrophic factors, including insulin-like growth factor-1 (IGF-1), has become 
relevant in recent years because of its role in brain activity and its potential therapeutic applications. 
This article reviews IGF-1 in relation to neuropsychiatric disorders such as autism, anxiety, depression, 

post-traumatic stress disorder and Alzheimer's disease. An exhaustive search of different original 
articles, clinical, experimental, and review studies was carried out in MEDLINE/PubMed and 
ScienceDirect databases, selecting 80 high-impact post-2000 publications. It is concluded that despite 
the many functions of IGF-1 in the developing nervous system as well as in the adult brain that have 
been studied, especially with animal models, their role in the human brain with neuropsychiatric 
disorders is not completely understood, yielding contradictory data in highly prevalent disorders such 
as mood disorders. However, greater implications are encountered with neurodegenerative disorders. 
In addition, its high potential as a therapeutic resource in difficult-to-approach neuropsychiatric 
disorders, such as autism and Alzheimer's disease, is pointed out, but more research is needed at both 
basic and clinical levels, to fully understand its relevance in these disorders. 
 
  

Introduction 

The development of neuroscience as a multidisciplinary 
science, is providing the possibility of a deeper study of the 

human brain, especially the alterations of the central 
nervous system. Its development is based on experimental 
studies, genetic analysis, cellular and molecular biology 
studies, neurocognitive approaches, real-time studies of 
brain activity (EEG, MEG, iRMF, SPECT, etcetera) among 
others, which has allowed to unravel the different 
biological-functional changes of the human brain following 
neuropsychiatric diseases, especially those with unknown 
origin that involve a wide neurobiological deregulation [1]. 
 
Furthermore, the investigation of metabolic alterations and 
the relationship of different peptides involved with central 

nervous system disorders has gained great  

 
 

attention within research in neuroscience [2],[3],[4]. 
Among them, insulin-like growth factor-1 (IGF-1) has been 

attracting the attention of researchers in different scientific 
and medical branches because it is a pleiotropic peptide, 
involved in various cellular pathways/functional 
systems [5], and its Influence in the behavior of even other 
neurotrophic factors and neurotransmitters [2]. The study 
of IGF-1 cell pathway disruption, its receptors or serum 
IGF-1 levels, has been linked to various neuropsychiatric 
diseases and is seen as an important triggering factor. 
Some of these studies are briefly reviewed in relation to 
depression, anxiety, post-traumatic stress disorder, 
neurodegenerative disorders and autism, due to their 
prevalence, disease burden or high relative disease weight, 

and the major functional and social impairment they 
provoke [1]. 
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This article aims to summarize the different studies that 
indicate the evidence of an alteration or possible 
relationship between insulin-like growth factor-1 and 
neuropsychiatric disorders referred, which will allow us to 
know their possible role in the etiopathogenesis of these 
disorders. 

 

Methods 

An exhaustive search of different original articles, clinical, 

experimental, and review studies was performed in 
MEDLINE/PubMed and SCIENCE DIRECT databases, with 
the search words "IGF-1, autism, autism spectrum 
disorder, anxiety, depression, major depression disease, 
post-traumatic stress disorder, Alzheimer's disease, 
neurotrophic factors”. The studies were selected for their 
relevance and analysis with the IGF-1, to have been 
published in journals indexed in English and after year 
2000. We also analyzed the references of the articles 
selected to search for additional studies. We found 80 
articles that were organized according to the search words. 
 

Within the selection criteria were considered: extensive 
description of the IGF-1 system and / or neuropsychiatric 
disorders mentioned; measurements of IGF-1 / IRS1 / 
IGFBPs, in blood, LCR, tissues, or others; studies carried 
out in animal models with validated disorder or in 
diagnosed human patients. 
 
Next, a brief review of IGF-1 is performed, and then its 
relationship with the neuropsychiatric disorders mentioned 
is explored. 
 
Insulin-like growth factor type 1 

Insulin-like growth factor-1 (IGF-1) shares 48% structural 
homology with insulin [1],[2]. It is a peptide composed of 
70 amino acids and has a weight of 7.5 kDa, mapped on 
chromosome 12 in humans and chromosome 10 in 
mice [2],[3]. IGF-1 is produced via a paracrine and 
endocrine manner by various tissues such as the brain, 
cartilage, skeletal muscle and pancreas, its main source is 
liver [4]. Production in the liver accounts for 75% of IGF-1 
in the blood and is released by hepatocytes in response to 
growth hormone stimulation (GH); this production 
circulating in blood, can also enter the brain to exercise its 

properties [5]. 
 
IGF-1 fulfills important functions of cell growth and 
development, differentiation, synaptogenesis and 
mitogenesis [2]. Thanks to transgenic models of knockout 
mice that had the IGF-1 gene removed (igf1), its effects 
are known during pre and post natal development [6]. In 
the adult, in addition to the properties already mentioned, 
IGF-1 participates in the response to tissue damage. For 
example, in its synthesis and entry into the brain before 
trauma [7], or in neurogenesis [8]. In human studies, 
cognitive approaches have been performed showing better 

scores on neuropsychological tests that correlate with 
serum IGF-1 levels [9]. It has also been observed a greater 
symptomatological presence in neurodegeneration and 
neuropsychiatric disorders, in relation to changes in the 
IGF-1 system [10],[11]. 

As we can see, the IGF-1 system comprises a complex 
regulatory network that operates throughout the 
body [12] with multiple neurotrophic, metabolic, cell 
growth and neuroprotection properties [2],[13]. 
 
IGF-1 receptor 

IGF-1 exerts its physiological effects, mostly by binding to 
its receptor (IGF-1R) [14]. The IGF-1R is a tetramer, 
composed of two extracellular α chains and two intracellular 
β chains, associated with a tyrosine kinase domain [3],[15]. 
The binding of IGF-1 to its receptor originates in a cysteine-
rich region of the receptor α subunit to generate a 
conformational change [16]. The conformational change 
allows the activation of its tyrosine kinase domain, 
phosphorylating the corresponding sites of the β subunit, 
and promoting auto-phosphorylation of the receptor and 
the substrate of the insulin receptor type 1 (IRS-1) [15]. 
The latter would be a crucial element of receptor 

activation [17], since different intracellular signaling 
pathways will be activated through it. 
 
IGF-1 also exerts its effects through insulin receptors (IR) 
in its α and β isoform [18], although with lower affinity [2], 
because it shares only 50% structural homology with the 
IGF -1R [19] There are also other hybrid receptors formed 
by the pro-receptors of IR and IGF-1R, however their 
function has not yet been understood in detail [20]. 
 

IGF-1 signaling mechanisms 

The binding of IGF-1 to its receptor initiates intracellular 
signaling related to cell growth, metabolism and inhibition 
of apoptosis, among others [2]. The IGF-1R remains in 
reduced catalytic activity in its non-phosphorylated 

state [16] until its binding to IGF-1, allowing auto-
phosphorylation of the receptor. The latter will serve as a 
site for coupling to adapter proteins such as the IRS-1/IRS-
2, as well as the domain 2 homologue of Src (SH2) that 
continue with intracellular signaling [16]. When the IRS-1 
protein is altered, there is no compensation of the IRS-2 or 
other related proteins (Shc, p85, and Grb2) [21]. The 
alteration of IRS-1 in the intracellular action of IGF-1 or 
insulin would be an indication of resistance to these 
peptides [22]upon disruption of their signaling pathway. 
 

The phosphorylation of IRS-1 and IRS-2 on multiple 
tyrosine residues promotes an intracellular signaling 
cascade in at least two pathways. The first, the 
phosphatidyl-inositol-3-kinase pathway (PI3-K), implicated 
in cell growth, metabolic and anti-apoptotic processes. The 
second, mitogen-activated protein kinase (MAPK) pathway, 
involved in mitogenesis, cell differentiation, and so on. [2]. 
Activation of the PI3K pathway leads to activation of Akt 
(protein kinase B), mTOR (target of rapamycin), and 
inhibition of GSK3 (glycogen synthase kinase-3) [23]. 
 
Resistance to the IGF-1 system 

Resistance to IGF-1 and insulin has been especially 
addressed in neurodegeneration studies [11], indicating 
alterations of the IGF-1 system, such as a lower affinity of 
the IGF-1R to its substrate, or an IRS-1 altered 
signaling [11]. In relation to the latter, higher levels of IRS-
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1 phosphorylated serine 616, as well as Akt, in tauopathies, 
Alzheimer's disease [23] and in other disorders have been 
observed. 
 
On the other hand, activation of tumor necrosis factor alpha 
(TNFα) promotes the activation of JNK (N-terminal c-Jun 

kinase). This stress signaling pathway is involved in 
neuronal plasticity, regeneration and cell death. Likewise, 
JNK can directly induce insulin resistance by 
phosphorylating the IRS-1 by inhibiting its signaling [24], 
and acting as an antagonist pathway for IGF-1 [25]. 
IGF-1 entry into the brain 
 
Several of the effects of circulating IGF-1 on its entry into 
the brain are mediated by the blood-brain-barrier (BBB). 
The blood-brain barrier is a dynamic and complex interface 
between the blood and the central nervous system (CNS), 
which protects the brain from entering foreign molecules, 

in addition to intervening in its homeostasis [26]. The flow 
of nutrients and metabolites that pass from the blood to the 
CNS is largely regulated by the BBB, controlling its 
availability by different transport systems [26]. The 
circulating IGF-1 accesses the nervous system by 
transcytosis, through the choroid plexus [13] and blood 
vessels [2]. Transcytosis regulates endocytosis and the 
transport of molecules across the cell, for eventual 
release [2]. This transport includes the IGF-1R and the low 
density lipoprotein receptor type-1 (LRP1), to reach the 
cerebrospinal fluid, the hypothalamus and 
hippocampus [27]. 

 
IGF-1 entry and its effects on the brain are also regulated 
by IGFBP (insulin-like binding protein) [28]. These proteins 
modulate the actions of IGF-1 by controlling their 
availability and their half-life in blood [29]. There are 6 
binding proteins that are specifically located in different 
tissues. The IGFBP-2, IGFBP-4 and IGFBP-5 are highly 
expressed in the brain [27]. These proteins can be 
synthesized especially in response to CNS injury [30], and 
when they bind to IGF-1, they form a complex that allows 
both their transport and inactivation [31] thus mediating 

their effects on the brain. 
 
Animal models for the study of IGF-1 
Different transgenic animals have been developed to 
characterize the IGF-1 system [6]. IGF-1 knock out models 
showed severe alterations in utero. Those animals that 
survived at birth showed a severe delay in the development 
of various organs and their growth, reaching only 30% of 
normal size [6]. The models that overexpress IGF-1 showed 
an increase in the size of different organs, as well as their 
growth from 3-4 weeks of age, reaching up to 30% greater 
size in adulthood. Some of these transgenic lines also 

showed an increase in brain size between 25-85%, with 
most animals dying [31]. 
 
Other models over-express IGFBP (IGFBP-1 to IGFBP-6). 
These proteins, by competing with the IGF-1R for binding 
to their ligand, affect cell growth and other processes 
mediated by inactivation of IGF-1 [32]. For example, the 
phenotypic consequences of IGFBP-1 expression are the 
reduction in brain growth, depending on the level of 

involvement and the time of development in which it was 
altered. In contrast, transgenic adult mice overexpressing 
IGFBP-2 showed only a 10-13% reduction in their body 
weight [32],[33]. It is thus that each of the transgenic 
strains exhibit a distinct phenotype, confirming a specific 
role of IGFBPs in the activity of the IGF-1 system [33]. 

 
On the other hand, animals knock out for IGF-1R showed a 
developmental delay in utero even greater than the knock 
out for IGF-1 [33]. They also showed abnormalities in 
muscle development, in the central nervous system and 
delayed fetal growth, reaching a weight lower up to 
45% [6]. In animal knock out for IRS-1, the signaling 
cascade of IGF-1/PI-3K is shown reduced, and a decrease 
in growth between 50 and 60% is observed [21]. 
 
To better evaluate the endocrine/paracrine production of 
IGF-1, [34], they developed a conditional knock out model, 

removing the igf1 gene specifically in the liver. To fulfill 
their purpose, they used a Cre/loxP system where mice with 
the flanched igf1 loxP gene were mated to mice expressing 
the Cre recombinase exclusively in the liver. The complete 
elimination of the IGF-1 gene allowed mice to be produced 
with a 75% decrease in circulating IGF-1 [34]. Mice 
deficient in IGF-1 liver or Liver IGF-1 Deficient (LID) 
showed normal development, growth and fertility [34]. 
Subsequent studies have shown that these animals have 
motor learning, visual discrimination and long term 
potentiation (LTP) in the neocortex. However, their spatial 
learning and LTP are altered in granular cells of the 

hippocampus [35]. These animals also present greater 
anxious behaviors measured in the forced swimming test 
and the novelty suppressed feeding test [36]. 
 

IGF-1 and neuropsychiatric disorders. 

The investigation of metabolic alterations, different 
peptides involved with perturbations of the nervous 
system, and the study of the IGF-1 cell pathway, its 
receptor or serum IGF-1 levels, has been related to various 
neuropsychiatric diseases and is seen as an important 
triggering factor [2],[37],[38]. Some of these studies are 
briefly reviewed below. 
 
Studies on depression and anxiety 

Several studies suggest that patients with major depression 
present alterations in the levels of various neurotrophic 
factors, such as the brain-derived neurotrophic factor 
BDNF, fibroblast growth factor FGF, vascular endothelial 
growth factor VEGF, and insulin-like peptides such as IGF-
1 [39],[40]. Although all these neurotrophic factors do not 
directly control emotion [40], they are linked to the various 
areas and systems of neurotransmission more related to 
mood disorders. 
 
On IGF-1, its role in the control and regulation of mood has 
been suggested because of its implication in processes such 

as synaptic plasticity, cell differentiation and 
neurogenesis [20]. Experimental studies show that the 
decrease in circulating IGF-1 in the hippocampus is related 
to depressive behaviors [41], and less response to 
treatment with antidepressants [42]. On the other hand, it 
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has been observed that the administration of IGF-1 
promotes neurogenesis and the reduction of depressive 
symptoms [43], and that the antidepressant effects of 
exercise, as well as environmental enrichment, would be 
mediated by IGF-1 circulating to the brain in animal 
models [44]. In humans it has been found that low levels 

of IGF-1 in women, and high in men, predict the incidence 
of depressive disorders after 5 years [45]. In older adults, 
a meta-analytic study has found that lower and higher IGF-
1 levels would be associated with higher depressive 
behavior in this population [46]. 
 
However, other studies with human populations find 
disparate results [47],[48], for example Kopczak et 
al., [15] found elevated levels of IGF-1 in depressed 
patients, as well as an altered response to antidepressant 
treatment. Likewise, it has been found that elevated plasma 
IGF-1 levels are higher in subjects with major depression 

without any treatment [49], or these levels have no direct 
relationship with the presence of depression [50]. It is 
possible that these conflicting results are due to several 
factors not yet explored, such as the implication of various 
IGFBPs in depression, as well as mechanisms of resistance 
to IGF-1 involved. 
 
Regarding anxiety, animal studies show that reduced levels 
of circulating IGF-1 are associated with increased presence 
of anxious symptoms and less neurogenesis in 
hippocampus [36],[51]. Research on rats induced by 
diabetes with streptozotocin revealed higher levels of 

corticosteroid and anxiety, lower levels of serum IGF-1, 
prefrontal cortex, and increased apoptosis in the prefrontal 
cortex [52]. Other studies link the anxiolytic effects of 
exercise with IGF-1 [8], although it may have gender-
specific effects. For example, Munive, Santi, & Torres-
Aleman [53] suggest specific brain actions of IGF-1 
according to sex, in response to physical exercise, this IGF-
1 response is a possible mediator of differences in affective 
disorders of these populations. 
 
Post-traumatic stress disorder (PTSD) 

Traumatic events during development cause hormonal 
abnormalities in the long term [54],[55], and an increased 
risk of developing PTSD in humans [56]. Studies with 
animals at an early age have shown to mimic these 
characteristics, revealing the importance of hormonal and 
emotional reactivity in animals [57]. 
 
Studies with models of prenatal stress and maternal 
separation, suggest alterations of different neurotrophic 
factors [58]. In prenatal stress, IGF-1 levels decrease 
drastically in the hippocampus and frontal cortex [59],[60], 
and there is an increase in IGFBP-2, IGFBP-3 and IGFBP-4 

levels in these areas [60]. Similarly, maternal clearance in 
postnatal rats promotes abnormal expression of IGF-1 and 
IGF-1R in cortex, as well as decreased IGF-1 over 
time [59]. In the adult animal, it has been observed that 
decreased levels of circulating IGF-1 are associated with 
lower hippocampal neurogenesis [8],[35], decreased 
hippocampal cortex volume and functional 
alteration [57],[60], although they would not be the only 
structures affected. 

Studies in IRS-1 showed that chronic and acute 
psychogenic stressors produce a physiological response 
characteristic of insulin resistance [61],[62], suggesting 
similar changes in IGF-1. Other possible mechanisms 
linking IGF-1 and PTSD suggest a decrease in adult 
hypothalamic neurogenesis, with successive deregulation 

of the HPA axis by a decrease in neurotrophic agents, 
especially IGF-1 [63], the hippocampal atrophy by adrenal 
steroids [64], as well as a possible altered IGF-1 activity in 
the adenohypophysis [61]. 
 
Neurodegenerative disorders 
In recent years, several studies are linking the presence of 
neurodegenerative diseases to the development of 
diabetes, metabolic disorders and insulin resistance 
[11],[62]. Studies in animal and human models show that 
reduced serum IGF-1 levels are associated with cognitive 
dysfunctions, and it has been shown that these disorders 

may be reversible through prolonged systemic 
administration of IGF-1 [27]. In the case of Alzheimer's 
disease, these patients may present resistance to IGF-1, 
which promotes the appearance of neurofibrillary tangles 
and amyloidosis [63].  
 
Decreased circulating levels of IGF-1 in mice, their non-
uptake by the brain, or IGF-1R blockade would inhibit the 
PI3K/Akt pathway, leading to increased amyloidosis and 
tau phosphorylation, as well as occurrence of cognitive 
disorders, developing in these animals a phenotype of 
Alzheimer's disease [64]. Also, other neurotrophic and cell 

growth factors such as BDNF and the glial cell-derived 
neurotrophic factor GDNF, have been linked to increased 
neuronal survival in cellular and animal models of 
neurodegeneration [65]. Westwood et al., [62] found that 
reduced levels of serum IGF-1 are associated with a higher 
incidence of Alzheimer's disease in older adults. Regarding 
healthy subjects, they found that those with higher serum 
IGF-1 levels showed higher total cortical volume levels, as 
evidenced by magnetic resonance imaging studies [62]. 
 
Insulin resistance, as well as IGF-1 related to Alzheimer's 

patients, goes beyond those who have comorbidity with 
type 2 diabetes, for example Talbot et al., [66] studying 
the hippocampus and cerebellar cortex in cases of EA, 
found a strong reduction of the IR/IRS1/PI3K signaling 
pathway, as well as a minor response of the IGF-
1/IR/IRS1/PI3K pathway, this resistance to IGF-1 is related 
to IRS- 1 dysfunction, as well as to larger A-Betha 
oligomers [66]. Metabolic alterations, as well as IGF-1 and 
insulin resistance processes are a pathophysiological 
feature not only of Alzheimer's disease, but also of other 
neurodegenerative processes [11],[67],[68].  
 

Autism 
Due to the importance of the neurotrophic factors in the 
development of the cerebral system, the approach of its 
alterations and, especially of the IGF-1, have attracted the 
attention in the study of the cellular mechanisms of the 
developmental disorders, especially related to maturation, 
connectivity and neuronal differentiation [69]. In relation 
to autistic spectrum disorders (ASD), a disorder 
characterized by alterations in communication and 
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language, social interaction, the presence of repetitive and 
stereotyped behaviors, as well as sensory sensitivity [70], 
a wide range of genetic variations involved have been 
reported, many of which are related to synaptic activity and 
immune function [71],[72]. In one of the first studies that 
related IGF-1 and autism, the amounts of this peptide in 

the cerebrospinal fluid of children with autism were studied, 
finding a significant decrease of this trophic factor in 
comparison to the controls [73].  
 
Subsequent experimental approaches have analyzed the 
genetic alterations related to SHANK3, a gene related to the 
post-synaptic density of the glutamatergic synapses. 
Treatments of IGF-1 in knock out animals for this gene, 
showed improvements for the displayed deficits compared 
to controls that were only injected with saline [74]. A study 
in subjects with Phelan-McDermid syndrome, the human 
disorder related to SHANK3 deficiency, and presenting 

similar alterations to ASD, showed an improvement in 
social disturbance, as well as a decrease in the repetitive 
and stereotyped behavior of those children who were 
treated with IGF-1 for 4 weeks [73]. Despite the different 
phenotypes related to ASD, these approaches lead to the 
study of potentially useful treatments in this 
neurodevelopmental disorder [71],[72]. 
 

Discussion 

We have reviewed 80 high-impact research articles 
addressing insulin growth factor type 1, and 
neuropsychiatric disorders such as autism, anxiety, 
depression, Alzheimer's disease, and post-traumatic stress 
disorder. 
 

In conclusion, IGF-1 is an important neurotrophic factor 
whose regulatory network operates throughout the body, 
and despite many of its recognized functions in the 
development of the nervous system, with multiple 
neurotrophic, metabolic, cell growth properties and 
neuroprotection [2],[13], their role in neuropsychiatric 
disorders is not fully understood, yielding conflicting data in 
highly prevalent disorders such as those affecting mood. 
 
In reference to its relationship with depression, its role in 
the control and regulation of mood has been suggested 

because of its implication in processes such as synaptic 
plasticity, cell differentiation and neurogenesis [20]. In 
humans it has been found that low levels of IGF-1 in 
women, and high in men, predict the incidence of 
depressive disorders after 5 years [45],[46]. It is possible 
that these conflicting results are due to several factors not 
yet explored, such as the implication of various IGFBPs in 
depression, as well as mechanisms of resistance to IGF-1 
involved. 
 
Regarding anxiety, animal studies show that reduced levels 
of circulating IGF-1 are associated with increased presence 

of anxious symptoms and less neurogenesis in 
hippocampus [36],[51]. 
 
Traumatic events during development cause hormonal 
abnormalities in the long term and an increased risk of 

developing PTSD in humans [56]. Several experimental 
studies show important relationships between altered IGF-
1 mechanisms (e.g. IGF-1R, IRS-1, AKT, PI3K, etc.), with 
PTSD, anxiety and depressive-like symptoms in animals, 
and structural alterations of the hippocampus, prefrontal 
cortex, amygdala and hypothalamus. The latter, would be 

of particular relevance as the starting point of the GH/IGF-
1 axis, or the hypothalamic-pituitary-adrenal (HPA) axis. 
The HPA axis mediates the stress response, and at the 
same time, glucocorticoids appear to be related to the 
alteration of the intracellular signaling pathway of IGF-1, 
affecting for example neurogenesis and propitiating 
atrophy in hippocampus [42],[75],[76]. 
 
However, greater implications are encountered with 
neurodegenerative disorders. In relation to EA, it has been 
referred to as "type III diabetes" because of its high relation 
with the mechanisms of type 2 diabetes, the etiological 

hypothesis of resistance to peptides such as insulin and 
IGF-1, as well as its experimental treatment with these 
peptides [77],[78]. 
 
The implication of IGF-1 in cerebral maturation, 
synaptogenesis, cerebral plasticity, neurogenesis, memory 
and learning, as well as its anti-apoptotic and 
neuroprotection mechanisms make it a potential 
therapeutic resource in neuropsychiatric disorders of 
difficult approach, such as autism and Alzheimer's 
disease [2],[16],[75],[76]. However, further research is 
needed both at the basic and clinical level applied to fully 

understand its relevance in these disorders. Currently, the 
possible implication in obsessive-compulsive disorder, 
schizophrenia, Huntington's disease and Parkinson's 
disease are also being studied, showing their importance in 
different neuronal mechanisms that affect these 
disorders  [79],[80],[81],[82],[83],[84],[85],[86]. 
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