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Abstract 
Biomedical research, particularly when it involves human beings, is always sub-
jected to sources of error that must be recognized. Systematic error or bias is asso-
ciated with problems in the methodological design or during the execution phase 
of a research project. It affects its validity and is qualitatively appraised. On the 
other hand, random error is related to variations due to chance. It may be quan-
titatively expressed, but never removed. This review is the first of a methodological 
series on general concepts in biostatistics and clinical epidemiology developed by 
the Chair of Scientific Research Methodology at the School of Medicine, Univer-
sity of Valparaíso, Chile. In this article, we address the theoretical concepts of 
error, its evaluation, and control. Finally, we discuss some current controversies 
in its conceptualization that are relevant to undergraduate and graduate students 
of health sciences. 
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Key ideas
• Error is inherent in biomedical research. 
• Systematic error (bias) is associated with weaknesses in methodological design or study execution that can affect the validity of 

the study results. It can be assessed qualitatively and avoided. 
• Random error is the result of variations that occur due to chance and affect the reliability of the investigation. It can be esti-

mated and expressed quantitatively using p-values and confidence intervals. It cannot be eliminated, but it can be controlled by 
using larger sample sizes and efficient statistical analysis. 

• When interpreting research study conclusions, the potential effects of error (both systematic and random) should always be 
taken into account. 
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Introduction 
Biomedical research, especially when conducted on human beings, 
is constantly subjected to errors due to the characteristics of its object 
of study, as well as practical and bioethical limitations.  Error assess-
ment is fundamental in the analysis of data, but mainly during the 
study design, which would allow anticipating the occurrence of sys-
tematic errors. Random error, on the other hand, can be expressed 
quantitatively according to the theory of probabilities, which allows 
us to estimate the effect of chance on the result of a measurement. 
Random error can affect the presumed representativeness (reliabil-
ity) of a sample with respect to the source population, adding un-
certainty and imprecision to estimates for population parameters. 
Given the inherent risk of systematic error and the occurrence of 
random error, the accuracy or validity of research results cannot be 
expected or assumed. The accuracy or validity of any measurement 
process used in research is, on the other hand, a requirement. A valid 
measurement process is on that is free of bias, where the difference 
between the estimate and the true value of a population parameter, 
for example, is low and reliable—that is, reproducible and con-
sistent, or accurate, generating data with little variability among suc-
cessive measurements1-3.  

Random error (which affects reliability) and systematic error (which 
affects validity) are two of the main elements evaluated during the 
development of scientific research and the subsequent critical evalu-
ation by the readers of the published article. Because it is assumed, 
from a complex point of view, that the studied phenomena are al-
ways multicausal and multivariate, considering an association as true 
and, even more, declaring it as “causal,” implies the combination of 
results from different disciplines and always requires the integration 
of its context. 

This review is the first release of a methodological series of six nar-
rative reviews about general topics in biostatistics and clinical epide-
miology. Each article will cover one of six topics based on content 
from publications available in the main databases of scientific liter-
ature and specialized reference texts. In this first review, we analyze 
different theories and practical elements associated with error in bi-
omedical research, emphasizing its evaluation and control. Finally, 
we review the current perspectives regarding their theory and some 
controversies regarding their conceptualization. 

Preliminary concepts 
A hypothesis is a tentative answer to a research question. In the case 
of the statistical hypothesis, the construction is based on two as-
sumptions: the null hypothesis (H0) and the alternative or alternate 
hypothesis (H1). H0 assumes there are no statistically significant dif-
ferences between specified populations, variables, or other phenom-
ena in the world (and that any apparent differences are due to sam-
pling errors) and therefore inductive inferences (generalizations) 
about any relationship(s) between them are wrong—that is, the ex-
posure and outcome factors are not related to each other. It is a con-
servative hypothesis posed in contrast to H1, the research or work 
hypothesis, which asserts that observed associations between differ-
ent phenomena are not explained by chance4. 

The declaration of a null and an alternative hypothesis is essential in 
inferential statistics, where hypotheses contrast tests are applied to 
find sufficient evidence to reject the null hypothesis and to support 
the hypothesis under investigation. However, it should always be 
kept in mind that the result of a hypothesis test is just one more 
element for decision making5 (Example 1)6. 

Example 1. The association between chocolate consumption and 
cognitive functioning has been studied. In this context, Messerli 
argues that countries with higher consumption of chocolate have 
a greater number of Nobel Prize winners because chocolate may 
be associated with cognitive performance. In this case, the statis-
tical hypothesis of the researcher (H1) would be that chocolate 
consumption is correlated with obtaining a Nobel Prize. There-
fore, the null hypothesis (H0) would be that chocolate consump-
tion does not correlate with obtaining a Nobel Prize. 

Systematic error (bias) 
Systematic error or bias can be understood as the systematic ten-
dency to underestimate or overestimate the estimator of interest be-
cause of a deficiency in the design or execution of a study7. This bias 
undermines the study’s validity (internal or the degree of agreement 
between the study results and the true value of the population pa-
rameter, and external or the degree to which the results for one study 
sample can be extrapolated to other populations)2. Biases can be as-
sociated with any phase of a research study but tend to skew the 
results in the same direction2. 

Biases that result in overestimation of the magnitude of association 
between variables are described as positive ("against" the null hy-
pothesis) and biases that reduce the magnitude of an association are 
described as negative ("in favor" of the null hypothesis). In an ex-
treme case, bias can trigger the inversion of an association, causing, 
for example, a protective factor to appear as a risk factor; this form 
of error is called “switch-over bias”3,8. 

When it comes to research with human beings, systematic error is 
controlled through the study of epidemiology, using the appropriate 
methodological designs and data collection strategies2. There are 
many different types of bias (https://catalogofbias.org/)9,10 but they 
usually fall into three main categories: selection, measurement (or 
information), and confusion4. Selection bias occurs when the rela-
tionship between exposure and outcome changes across different 
groups of study participants (that is, there are systematic differences 
between the characteristics of the participants)8 (Example 2). 

Example 2. Some research has pointed to the consumption of 
meat as a risk factor for the development of gastric cancer. To 
analyze it, a prospective cohort study is designed to compare the 
rate of five-year survival after diagnosis of gastric cancer between 
meat consumers (group A) and non-meat consumers (group B). 
Group A comes from a country with no systematic research on 
that neoplasm and no specific health system protocol for diagno-
sis and treatment. Group B comes from a country where routine 
digestive endoscopies are performed because the health system 
recognizes a high incidence of gastric cancer in the region. It is 
concluded that group B has a significantly higher 5-year survival 
rate. However, it is likely that the longer survival of group B is 

https://catalogofbias.org/
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due to early diagnosis and treatment rather than to a diet free of 
meat. In this case, bias was inherent in the selection of the sam-
ples because some of their baseline characteristics (e.g., health op-
portunities) were different. In this case, samples free of selection 
bias would only have differed in whether they consumed meat or 
not. 

Regarding measurement bias, it has three different forms: bias in the 
measured phenomenon (for example, memory bias due to differen-
tial recall of exposure in a case-control study), bias in the measuring 
instrument (for example, changes over time in diagnostic criteria), 
and bias of the observer who makes the measurement1. Confusion 
bias occurs when errors occur in the interpretation of associations 
between dependent and independent variables due to inadequate 
control of other variables in the research protocol. The different 
types of biases will be described in more detail in future articles in 
this series on the various methodological designs in which they occur 
most frequently. Due to its complexity and ubiquity, confusion bias 
will be covered in several reviews in the series. 

A confounding variable is one that is associated with both the expo-
sure variable (without being a result of it) and the outcome variable 
(regardless of its association with the exposure variable) but is not 
found in the causal path of association11,12. This skews or “confuses” 
the association between exposure and outcome1. Confounding vari-
ables should not be mistaken for interaction variables that operate as 
“modifiers of the effect” (those that interact with the exposure vari-
able by modifying the magnitude of its effects on the outcome but 
are not the cause of the outcome itself)1. 

Researchers should be aware that confusion bias is complex, promi-
nent, and multifactorial4. It can be prevented at the study design 
level (for example, randomization in randomized clinical trials) or 
controlled during data analysis (stratified analysis or statistical re-
gression models, for example)4. Example 3 describes the effect of 
confusion bias in an observational study conducted in Norway by 
Strand et al.12,13. 

Example 3. A cohort study conducted to compare 849 children 
with cerebral palsy to 615,668 children without the pathology 
concluded that the odds ratio of having a mother with preeclamp-
sia for those with cerebral palsy was 2.5 (95% confidence interval: 
2.0 to 3.2). That is, children had a 2.5 times greater chance of 
having cerebral palsy if their mother suffered from preeclampsia. 
However, this odds ratio was slightly attenuated (2.1; 95% con-
fidence interval: 1.7 to 2.7) when the association was adjusted for 
the variable “children who were small for gestational age” during 
the statistical analysis. Additional adjustments that considered 
the variable “preterm newborn” reversed the association in favor 
of preeclampsia, demonstrating that it could be a protective fac-
tor for the development of cerebral palsy for children born before 
32 weeks who were not small for gestational age (odds ratio: 0.5; 
95% confidence interval: 0.5 to 0.8). In this type of study, where 
the association is observed, the researcher has no control over the 
exposure variable, so the probability of incurring biases is greater. 
The authors controlled for confusion bias during statistical anal-

ysis using a statistical regression model known as logistic regres-
sion, which is often used to identify and evaluate confounding 
variables that might not emerge otherwise. 

Random error (chance) 
Random error is associated with variations resulting from chance 
that are inherent in all research and cannot be eliminated; this type 
of error can therefore influence results, even when biases have been 
properly controlled7, and compromise the reliability of the investi-
gation. Three main factors are associated with random error in study 
results14: the degree of individual and inter-individual variability, the 
sample size, and the magnitude of the differences (with the likeli-
hood of it being caused by chance falling as the difference found in 
the comparison increases). 

Observations that deviate from the true value of a variable in any 
sense are attributed to random error2. Random error is unpredictable 
but can be reduced by using larger sample sizes and efficient statis-
tical analysis14. This reduction implies that statistics control random 
error2, and that probability is related to the chance occurrence7. 
Therefore, adequate estimation of the sample size should counteract 
the effect of chance in the study. It should be noted, however, that 
a study’s sample size would not be an indicator of its internal valid-
ity. In other words, sample size is not directly associated with the 
level of bias of a research investigation14. Estimation of random error 
is carried out through two procedures: hypothesis contrast tests (p-
value) and confidence intervals15. 

P-value 

The value of p (probability) is the likelihood of observing an appar-
ent outcome, assuming that the null hypothesis is true. That is, the 
p-value is the probability of chance occurrence in the case that the 
null hypothesis is true (assuming that the phenomena under study 
are not related)4. The p-value answers the question “What is the 
probability of finding that association just by chance?” It is also a 
measure of the strength of the evidence against the null hypothesis14, 
as it can be understood as the probability of obtaining certain results 
given that the hypothesis that the researcher “wants” to reject is ful-
filled. Therefore, intuitively, if the p-value is very small, the null hy-
pothesis is rejected, and the research hypothesis is achieved16. 

Traditionally, the value of p is 0.05 (that is, when applying statistical 
methods that analyze the probability of occurrence, the associations 
have happened due to chance no more than 1 in 20 times, or 5% or 
less of the times)4; this suggests a probability that the null hypothesis 
will be rejected by mistake 5% of the time. However, there is no 
scientific reasoning behind the value 0.05 in itself; it is an arbitrary 
convention17. This cutoff point is referred to as “statistical signifi-
cance” (the value at which the null hypothesis can be rejected). This 
does not necessarily indicate that something important (“signifi-
cant”) has happened but should be interpreted as a calculation show-
ing that something “meaningful” has happened4,18. Some current in-
itiatives have proposed lowering the threshold of the level of signif-
icance from 0.05 to 0.00519. 

Different hypothesis tests are linked to different p-values; the proper 
choice of p-value depends on the study design and random variables. 



 4 / 7 

All are a function of the difference between the values observed in 
the study and those that would be observed if the null hypothesis 
were true, given the variability of the sample15. Another way of rep-
resenting p-values is as fractions whose denominators (variability of 
the result) decreases as the sample size increases and numerators in-
crease when the difference between the observed values and the ex-
pected values is greater14. 

Based on the information above, there are two types of errors asso-
ciated with chance. The first is the type I error, conceptualized as 
the probability of rejecting H0 given that H0 is true. This occurs 
when a study outcome suggests an association between variables that 
does not really exist. Thus, the statistical significance mentioned 
above constitutes the limit of type I error, whose numerical value is 
called α20. This type of error is found most frequently in clinical 
studies that seek to analyze a large number of associations simulta-
neously. Examples include a cohort study that analyzes multiple var-
iables for the same exposure, a clinical trial with different subgroup 
analyses, and a case-control study that explores countless risk factors 
together20.  

On the other hand, when there is an association, but the difference 
is not investigated by the study, a type II error occurs. This repre-
sents the probability of not rejecting H0, since H0 is false. The sym-
bol for a type II error is β. The complement of β (1-β) corresponds 
to the statistical power of the study (the probability of finding a dif-
ference, if it exists, in other words, verifying the research hypothesis). 
The power of a study is usually 0.8 to 0.9, meaning that it is 80% 
to 90% likely to detect the proposed difference, and that the result 
has statistical significance20. Example 4 shows the interpretation of 
the p-value in a study of biomarkers in severe mental disorders21. 

Example 4. Several investigations have reported an increased 
level of proinflammatory cytokines in people with severe psy-
chotic and affective disorders and those who have suffered psy-
chological trauma during childhood. To investigate this further, 
markers of inflammation and a history of childhood trauma were 
studied in people with schizophrenia, schizoaffective disorder, bi-
polar disorder with psychotic phases, and healthy people. The au-
thors concluded that people with schizophrenic disorders had sig-
nificantly higher levels of interleukin-6, tumor necrosis factor α, 
and C-reactive protein (proinflammatory cytokines) compared to 
healthy people, as well as significantly higher levels of tumor ne-
crosis factor α compared to people with bipolar disorders (with a 
p-value < 0.05 for all comparisons). It was also found that expo-
sure to childhood sexual abuse had a significant association (p = 
0.018) with C-reactive protein levels in people with schizophre-
nia. In this study, the authors established a level of significance of 
5% (0.05). That is, if an association has a p-value lower than this 
threshold when applying a statistical test, the null hypothesis (H0) 
can be rejected in favor of the alternative (research) hypothesis 
(H1), which, in this case, was that inflammatory markers are as-
sociated with severe mental disorders and the presence of child-
hood trauma. Thus, significant associations between the param-
eters studied were found. Specifically, it was determined, with a 
95% probability, that the observed associations were not due to 
chance but were explained by a different underlying mechanism. 

The question of whether the p-value depends on the sample size, 
with small samples more vulnerable to random error than larger 
ones, has been the subject of extensive debate. This is the reason for 
some of the strongest criticism of the use of hypothesis tests (the idea 
that the rejection of a hypothesis depends on sample size22, since the 
study conclusions will be limited if only a small portion of the pop-
ulation is evaluated, but the rejection of the null hypothesis would 
be virtually assured if a large part is evaluated)22. However, some 
authors oppose this criticism, claiming that, when studying discrep-
ancies in results of randomized clinical trials with large and small 
sample sizes, the differences found are not explained by sample size 
but by the control of biases, especially confusion bias. For this rea-
son, the general rule would be mostly concordance between results 
and not the differences14,23. Due to the limited amount of infor-
mation that the p-value can provide on its own, another way to 
quantify chance is using confidence intervals. 

Confidence intervals 

Confidence intervals consist of a range of values in which the real 
value of the parameter can be determined with a certain probability7. 
Therefore, confidence intervals reflect the degree of uncertainty. As 
already mentioned, a larger sample will result in a more precise con-
fidence interval for estimation of a population parameter (that is, a 
narrower range of values, indicating a lower effect of chance on the 
estimate). Like the estimation of the p-value, the estimation of the 
confidence intervals requires statistical inference, since a critical 
value in the interval that indicates the lack of association between 
two variables is excluded. In the case of indicators whose formula is 
a quotient (for example, relative risk and odds ratio), this value is 1, 
and when the indicators’ formula is derived by subtracting the risk 
of one group from the risk of another (for example, absolute risk 
reduction), the value is 0. In both cases, the values represent the 
points at which an event is equally likely in both groups18. Values 
that exceed the limits of the confidence interval may not always be 
entirely excluded, but it would be reasonable to think that it is highly 
unlikely to find the actual value of the parameter beyond these lim-
its24. Example 5 shows the interpretation of the confidence interval 
based on the results of the study by Strand et al. cited in Example 
313. 

Example 5. Initially, researchers found that having a mother with 
preeclampsia increased the chance of having cerebral palsy by 2.5, 
assuming that this association was significant, based on its 95% 
confidence interval of 2.0 to 3.2. In other words, the confidence 
interval did not include the value 1, indicating that there was no 
association between the study variables. This detail is important, 
since the odds ratio is calculated using a quotient. Subsequent 
statistical analyses showed that preeclampsia would be a protec-
tive factor against cerebral palsy in children born before 32 weeks 
who were not small for gestational age, since the odds ratio was 
0.5, with a 95% confidence interval of 0.5 to 0.8. The interpre-
tation is therefore the same: with a probability of 95%, the asso-
ciation between mothers with preeclampsia and children without 
cerebral palsy is explained by an underlying mechanism other 
than chance. 
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Perspectives and final considerations 
Considering an association as “true,” in other words, not explained 
by bias or chance, implies thinking about causality25, integrating 
what is known thus far about the mechanism underlying the phe-
nomenon under study. This encourages us to use new approaches 
rather than interpreting statistical associations superficially, which 
entails more complexity in our thinking, given various problems 
pointed out below. 

In order to extrapolate a result found in a sample at the population 
level (that is,  generalize based on a certain outcome), the conclu-
sions must not only be based on a statistical procedure or on the 
level of representativeness of the sample with respect to the popula-
tion but must also incorporate existing knowledge about the phe-
nomenon under study26. Causality should be studied considering 
the previous findings of other studies in the field. However, the pos-
sibility of integrating these findings into the analysis itself cannot be 
accurately measured. 

The analytical process associated with statistical inference through 
hypothesis tests excludes some important factors, such as biological 
plausibility and the body of existing evidence. Different approaches 
have emerged as alternatives to this process, including Bayesian 
methods27. Bayesian methods integrate previous experiences in the 
inferential process, since it is assumed that cumulative experience 
applying a certain hypothesis can and should contribute to its veri-
fication16. Here, the researcher expresses aprioristic points of view 
probabilistically, and these are added to the formal data analysis28. 

Although the Bayesian approach is not yet widely used in biomedical 
research16, there is extensive research on it, with positive results. In 

the meantime, even though this approach has the same theoretical 
framework as the p-value (the frequentist approach to probability), 
scientific publications have promoted use of the p-value, with con-
fidence intervals for at least three decades29,30. Confidence intervals 
are based on the same statistical framework as p-values but provide 
more information about difference between outcomes and chance 
in the measurement process22. 

Many scientific articles have focused on the p-value, which, as men-
tioned above, is a quantitative mechanism for assessing chance. Ac-
cording to some authors, even scientific research has focused on 
chance4. This has occurred at the expense of critical evaluation of 
biases, whose assessment is qualitative. Given a theory that, on the 
one hand, sheds light on which methodological designs are condu-
cive to each type of bias, and, on the other hand, interprets the study 
findings in the context of what is already known about the phenom-
enon, it is worth asking in what sense and to what extent could bias 
have affected these results? Can I believe what I see? That is, the 
results are not reliable on their own; their value depends on the ac-
curacy of the measuring processes that derived them. 
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Figure 1. Diagram of random error and systematic error. 
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