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Abstract 

Objectives  

The purpose of this article is to describe and develop the predictive 
value of three models during the COVID-19 epidemic in Chile, 
providing knowledge for decision-making in health. 

Methods  

We developed three models during the epidemic: a discrete model 
to predict the maximum burden on the health system in a short 
time frame—a basic SEIR (susceptible-exposed-infected-
removed) model with discrete equations; a stochastic SEIR model 
with the Monte Carlo method; and a Gompertz-type model for 
metropolitan city of Santiago. 

Results 

The maximum potential burden model has been useful throughout 
the monitoring of the epidemic, providing an upper bound for the 
number of cases, intensive care unit occupancy, and deaths. 
Deterministic and stochastic SEIR models were very useful in 

predicting the rise of cases and the peak and onset of case decline; however, they lost utility in the current situation due to the 
asynchronous recruitment of cases in the regions and the persistence of a strong endemic. The Gompertz model had a better fit in 
the decline since it best captures the epidemic curve’s asymmetry in Santiago. 

Conclusions 

The models have shown great utility in monitoring the epidemic in Chile, with different objectives in different epidemic stages. 
They have complemented empirical indicators such as reported cases, fatality, deaths, and others, making it possible to predict 
situations of interest and visualization of the short and long-term local behavior of this pandemic.
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Main messages 

• Mathematic models play an important role during the pandemic, helping to rationalize decision-making and predict 
important events such as an increase, maximizing, or decrease of incidence.  

• The simplest models can be of great benefit in predicting and monitoring epidemics, helping to understand the 
dynamics of the COVID-19 pandemic and contribute to decision-making. 

• We studied the predictive capacity of three simple mathematic models during the COVID-19 epidemic in Chile. 
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Introduction 

Since Daniel Bernoulli used a mathematical method in 1766 to 
evaluate the effectiveness of variation until today, a large number of 
models and mathematical-epidemiological concepts have been 
developed to study and follow the behavior of different infectious 
diseases in the population. Numerous authors such as J. Brownlee 
(1906, 1918), R. Ross (1911, 1917), McKendrick and Kermack 
(1927), and Reed and Frost (1928), among others, contributed to the 
development of this area of knowledge1. Later there was great 
development that included the spatial dimension, seasonality and the 
role of carriers, venereal transmission and others. Among these, the 
contributions of Anderson and May (1978), of Hudson and Dobson 
from 1985 onwards, and of Roberts and Grenfell from the 90’s1 
stand out. A large number of studies highlighted concepts such as 
threshold population, herd immunity2-5, reproductive number, serial 
interval, incubation times, and spillover in the dynamics of infectious 
diseases. All of these concepts contribute in some way to decision-
making6-8. In recent decades emphasis has been placed on spatial 
propagation9-17, the role of population mobility, and the connectivity 
of transportation networks such as airlines during the spread of 
epidemics18-23. These models have made great contributions to the 
study of different diseases such as Influenza AH1N1, AH5N1, HIV, 
SARS, and Ebola18-22. 

Numerous models have been developed for the current COVID-19 
pandemic, a disease caused by the SARS-CoV-2 virus, and for 
SARS24-27. Most correspond to Susceptible-Exposed-Infected-
Removed (SEIR) models with different stratification types, be it 
spatial, age, socio-economic, etc. Given the great complexity of 
forms of spreading, mathematical models can offer valuable tools to 
synthesize information to understand epidemiological patterns and 
develop quantitative evidence to inform global health decisions6. 

A model has been used in Chile with good success to short-term 
forecast ICU occupancy, warning authorities of the possible collapse 
of hospital capacity28. SEIR-type models are also used to predict the 
evolution of the epidemic locally29. Another study uses a polynomial 
cubic adjustment model to estimate case number and an exponential 
total case model to represent the daily effort to reduce the initial daily 
growth rate to warn of the pandemic’s potential30. Another study 
also analyzed the minimum daily effort required for the healthcare 
system to not collapse during the COVID-19 outbreak. A parametric 
threshold condition is obtained, which involves a parameter 
associated with the minimum daily effort for not collapsing the 
system31. All studies have helped to highlight the importance of 
modeling in decision-making32. 

The COVID-19 pandemic has cost more than 12 000 deaths in 
Chile. Initially, it had an accelerated growth that was partially 
controlled with interventions, such as closing schools and 
universities and implementing partial quarantines. After these initial 
measures, a relaxation of interventions and late interventions led to 
a large epidemic mainly concentrated in the Metropolitan Region 
(Santiago), despite the warnings made by the scientific community 
and different epidemic modeling teams. Subsequently, massive 
quarantines were established that have been associated with a 
decrease in the number of cases, leading to a relatively stable 
number, between 1 000 and 2 000, of daily cases in the country33. 
Throughout this process, a series of factors have complicated the 

follow-up of cases, such as changes in the notification system and 
underreporting cases. 

Considering that the simplest models can significantly contribute to 
the monitoring and prediction of epidemics, we have developed 
three simple mathematical approaches to understand and monitor 
the dynamics of the COVID-19 pandemic and contribute to 
decision-making in Chile. In this contribution, we report and discuss 
the usefulness, the successes, and the practical difficulties that have 
transpired in the development of COVID-19. 

Methods 

We carried out an ecological study using official daily public reports 
from the Chilean Ministry of Health, including new confirmed cases, 
cases that required admission to the ICU, and deaths attributable to 
COVID-19 nationally and sub-nationally (regions). With this 
information, we made: 1) estimates of the effective reproductive 
number Rt; 2) estimates of the underreporting of cases; and 3) we 
developed three models with different objectives to follow the 
epidemic in Chile. 

We calculate Rt using the method developed by Cori et al34. We 
consider the last two weeks (14 days) and a serial interval τ = 5 days 
with variability between 2 and 8 days (based on35-37). The 
underreporting of cases was estimated according to the method 
proposed by Russell et al.38,39 adapted to the situation in Chile33. 

Maximum potential load model 

The objective of this model has been to follow the evolution of the 
epidemic curve and establish short-term predictions (1 week) of the 
maximum potential loads of new cases, ICU occupancy, and deaths. 
This seeks to estimate the health system’s saturation level, which 
would allow informing decisions that aim to reduce the number of 
infections or increase the health system’s response capacity. 

If there are Ct new cases in a week “t” and that there are It = (Ct + 
Ct-1) infected people, considering that the cases remain contagious 
for up to two weeks, it can be proposed that:  

Ct+1 ≈ Rt (Ct + Ct-1). 

This means that all those infected in the previous two weeks are 
contagious and will contribute to infections the following week. 
However, not all infected individuals on a day “i” will become cases 
the following week, as this depends on the serial interval and its 
probability distribution. A more suitable expression is: 

 𝐶𝑡+1 = ∑ 𝑅𝑖 𝑝𝑖𝐶𝑡𝑓−𝑖 = 𝑅𝑡𝑓(𝐶𝑡 + 𝐶𝑡−1)𝑖=13
𝑖=0 , t in weeks, i in days, 

where tf represents the last day of the week “t”, pi represents the 
probability that someone infected on day “tf-i” infects someone in 
week t + 1. Thus a better expression is: 

Ct+1 ≈ fRt (Ct + Ct-1) (1). 

where f corresponds to a correction factor as a consequence of the 
probability distribution of the serial interval. For a maximum load, 
the correction factor is estimated as the maximum pi (i = 0-13) for a 
Gamma distribution with mean 5 and standard deviation 4.3 days 
(based on35-37); the correction factor is f ≈0.8. The equation (2) is a 
Fibbonacci like series, and requires two initial conditions (t1 and t2). 
In this study these was t1 = 10 (March 8), t2 =65 (March 15)(the new 
cases in the two first weeks). 
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Considering that approximately 3.5% of the cases reach an ICU 
(0.035Ct), that on average, an ICU is occupied for approximately two 
weeks, and that the latency between onset of symptoms and ICU 
requirement is approximately one week38,39, it can be proposed that 
occupied ICUs (Ut): 

Ut+1 = 0,035 (Ct + Ct-1) (2). 

To estimate the maximum number of deaths (Dt), we consider a 
latency of two weeks between the onset of symptoms and death of 
symptomatic patients of 2.6%38,39. So: 

Dt+1 = 0.026Tt-1 (3) 

where Tt-1 corresponds to the total number of cases from two weeks 
ago. Thus equations (1), (2) and (3) constitute the basis of this model. 
This model allows to predict the maximum potential load of 
COVID-19 expected for the following week, based on the “history” 
of the two previous weeks. 

Discreet SEIR model and stochastic model 

The objective of this model has been to try to predict the shape of 
the epidemic curve and the times in which the increase in the number 
of cases, the peak, and the decrease would occur in the earliest 
possible way. We use a variation of a SEIR (Susceptible (S), Latent 
(E), Infectious (I), removed (deceased + recovered (Rm)) model in 
its discrete form: 

Si+1 = Si – βSiIi (4). 

Ei+1 = Ei + βSiIi  – νEi (5). 

I i+1 = I i + νEi – (μ + γ) Ii (6). 

Rmi+1 = Rmi + (μ + γ) Ii (7). 

Ci+1 = pIi (8). 

Ui+1 = qCi-7 (9). 

Di+1 = hTi-14 (10). 

Where β is the transmission coefficient, ν the transfer rate from E to 
I, µ the mortality rate, γ the recovery rate, p the proportion of 
infected who are notified, q the proportion of symptomatic patients 
requiring ICU and h the fatality rate. The sub-idex “i”represents time 
in days. In this study the parameters ν = 1/5 days-1, (µ + γ) = 1/14 
days-1, p = 0.1, q = 0.035 and h = 0.026 were considered constant 
and the transmission coefficient β and the asymptote of the model 
"S*" as variable parameters. The model was adjusted as the epidemic 
progressed, depending on the changes in the number of reported 
and in the notification system. Initially, on April 15, the asymptote 
of the model “S*” was estimated considering a Chilean population 
of 19,000,000, a proportion of herd immunity 57.4%, that 5% could 
get sick (based on European experience), and a heterogeneity 
correction factor of 0.5 considering that at this time the epidemic 
was centered in Santiago. Thus initial S* = 19,000,000 x 0.547 x 0.5 
x 0.05 = 259,825 cases. The transmission coefficient β was estimated 
adjusting the best model. The model was adjusted weekly (if 
necessary), varying S* and β. The goodness of fit of the model was 
studied with the coefficient of determination (R2) and its significance 
(F-test). 

Given the great variability and stochastic fluctuations of the cases 
worldwide, in order to include their effects on the dynamics, we 
consider the simple stochastic version of the previous model, with 

the same parameters, based on equations (4) to (7), with the Monte 
Carlo kinetic method with the Gillespie algorithm40. In this, we 
consider the three events: 

1) A latent occurs with rate a1: βS(i)I(i); S = S-1; E = E+1; 

2) An infected occurs with rate a2: νE(i); E =E-1; I = I+1 

3) A removed occurs with rate a3: (μ + γ)I(i); I =I-1; Rm =Rm+1 

The probability for aj is: (event = j) = 
𝑎𝑗

∑ 𝑎𝑗
 . The time until the next 

event (τ) is exponentially distributed, with a rate equal to the sum of 

the rates of all possible events: f(τ) = ∑ jα je-τ∑ jaj ,with an expected 

value E(τ) =  
1

∑ 𝑎𝑗𝑗
 39. 

Gompertz model 

When a flattening in the curve of the total cases could already be 
established in Santiago, a generalized logistic type model, the 
Gompertz model, was fitted to the curve of the total cases (T(t)): T(t) 

= 𝑎𝑒𝑏𝑒−𝑐𝑡
 (11), where A is the asymptote and b and c are the 

parameters that control the curve’s position and the growth rate, 
respectively41. 

Results 

Maximum potential load model 

This model adequately reproduced the shape of the epidemic curve, 
maintaining values above those observed for weekly cases, the 
number of occupied ICUs, and the total number of deaths. When 
weekly cases were corrected for underreporting, they approached the 
maximum load predictions (Fig 1). 
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Figure 1. Discrete model of maximum potential load. 

 

For all the figures the blue and red lines are the expected values and their confidence bands.  
A. Weekly incidence (Cases/Week), the black line are the observed cases and the gray line are the 
cases corrected by underreporting with the method of Russell38,39.  
B. Total number of occupied ICUs, in black line the values observed and the gray line are those 
observed plus the patients on mechanical ventilation outside the ICU.  
C. Total number of deaths. The black line are the reported values. 
Source: Data from Health Ministry reports. Model prepared by the authors from the study results. 

Discrete SEIR Models and Stochastic Model 

This model was very useful in predicting the rise, peak, and decline 
of cases, with great predictive power until the decline phase of the 
initial outbreak in July and early August. (Fig 2A, Table 1). In recent 
months there has been a better adjustment to the corrected cases, 
but it has been losing adjustment, especially in ICUs and the number 
of deaths, which has had major changes in the reporting system (Fig 
2B, Table 1). The stochastic SEIR model allowed us to observe 
whether the variations in the number of cases were due to a 
mismatch in the model or to random fluctuations (Fig. 2C). 

 

Table 1. Adjustment of the deterministic SEIR model to the observed 
values. 

 July 15   

Comparison R2 F1,95 p 

CT vs E(CT) 0.98 6242.7 <0.001 
C vs E(C) 0.89 751.3 <0.001 
CCsr vs E(C) 0.88 687.1 <0.001 
UCI vs E(UCI) 0.80 373.0 <0.001 
M vs E(M) 0.95 1763.2 <0.001 

 September 30   

Comparison R2 F1.200 p 

CT vs E(CT) 0.97 3040.0 <0.001 
C vs E(C) 0.86 554.5 <0.001 
CCsr vs E(C) 0.92 1081.9 <0.001 
UCI vs E(UCI) 0.87 621.2 <0.001 
M vs E(M) 0.97 3146.4 <0.001 

CT, C, CCsr, ICU and M correspond to the observed values of total cases, daily cases, cases 
corrected for underreporting, occupied ICUs and deaths, respectively. 
E (CT), E (C), E (UCI) and E (M) are the expected values of these variables. 
Source: Table of own elaboration based on results of this study. 
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Figure 2. Discrete deterministic SEIR model 

 

The dark blue, green and red lines correspond to the expected values for daily incidence (E (C)), 
occupied ICUs (E (ICU)) and total deaths (E (D)).  
The blue, green and orange lines are the corresponding observed values and the gray line the daily 
cases corrected by underreporting.  

A. Projections until the mid-July with transmission coefficient β = 8 x 10-7 with an asymptote 
in S* = 350 thousand total cases.  

B. Projections until mid-September with β = 7.2 x 10-7, and S* = 450 thousand cases.  

C. Stochastic SEIR model.  

The red lines correspond to extremes values of 50 simulations with the same parameters with β 

= 7.2 x 10-7, and S* = 450 thousand cases.  
The blue and gray lines are the daily cases observed and corrected for underreporting, respectively. 
Source: Data from Health Ministry reports. Model prepared by the authors from the study results. 

Gompertz Model for the Metropolitan Region (Santiago) 

This model has allowed a good follow-up of the decrease in the 
number of cases in the Metropolitan Region and, so far, an adequate 
prediction of the endemic situation (Fig. 3). 

 

 

 

Figure 3. Gompertz models for the Metropolitan Region (Santiago). 

 

The blue lines correspond to the observed values and the red lines to the expected values.  
A. Total cases.  
B. Daily cases.  
The green lines are incidences of 10 and 5/100.000. 
Source: Data from Health Ministry reports. Model prepared by the authors from the study results. 

Discussion 

Mathematical models play an important role in monitoring 
epidemics, helping to rationalize decision-making, and predicting 
important events in the course of epidemics, such as increase, peak, 
and decrease in incidence. 

The objective of the maximum potential load model was to predict 
the maximum incidence, number of occupied ICUs, and deaths 
within a week. Initially, while the epidemic had very high 
reproductive numbers, greater than 1.533, the predicted values were 
very similar and even lower than those observed for ICU incidence 
and occupation. However, after May 30, the predicted values had a 
higher limit than the observed values, allowing an adequate safety 
coefficient in the prediction. For incidence, when the number of 
cases was corrected for underreporting, which has varied between 
30 and 60% throughout the epidemic33, the values were quite close 
to the predicted values except for the maximum. The prediction of 
occupied ICUs in the maximum period was much higher than that 
observed, partly explained because there was a saturation of ICU 
capacity during the maximum period, with up to 400 patients on 
invasive mechanical ventilation outside the ICU. Up to now, the 
model has followed the morphology of the epidemic curves 
adequately, but its predictive capacity is short, only one week, which 
is similar to previous models developed for the AH1N1 epidemic in 
Chile13-15. 

The SEIR model was very adequate, with an excellent prediction of 
the rise, peak, and decline in the number of new cases. This model 
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used several fixed parameters that are well justified. Latent period of 
5 days37, infectious period38,39, 3.5% ICU occupancy42 and 2.6% 
fatality38,39. In addition, considering 10% of new cases in relation to 
active cases was an adequate assumption, since currently, the 
percentage of new notified cases / active cases is 9.3 ± 4.9%. The 
transmission coefficient was empirically adjusted initially using 3.98 
x 10-8 in early April, predicting a maximum in early May; later, on 
April 15, it was adjusted to 8 x 10-7 with an asymptote of 350 000 
cases, with an excellent adjustment that predicted the maximum for 
June 19, which it occurred on June 14. It also had a good prediction 
for the initial decline in cases. Also, until the last week of June, it had 
an adequate prediction of the total number of deaths. However, the 
prediction of occupied was well above the number of occupied 
ICUs, partly explained by the saturation already mentioned. The 
decrease in the number of cases did not follow a typical curve of a 
SEIR model, which forced a new adjustment in July with β = 7.2 x 
10-7, with a load capacity of 450 000 cases, which improved the 

adjustment only for two weeks; later it lost all predictive capacity 
since the beginning of August. The stochastic SEIR model allowed 
for the inclusion of the variability of the predictions and showed the 
same loss of predictive capacity as the deterministic model. 

The good predictive capacity of the number of cases and the date of 
occurrence of the maximum and also the loss of predictive capacity 
during the decline of the epidemic is explained because, during much 
of the epidemic, the rise in cases and the maximum number of cases 
were produced mainly by cases in the Metropolitan Region (which 
includes Santiago), a region that has a population of approximately 
eight million inhabitants, about 42% of the population of Chile. This 
population is highly intercommunicated, behaving as a unit. The 
decrease in the Metropolitan Region cases has coincided with the 
gradual and asynchronous rise in cases in the remaining 15 regions, 
which has kept the cases in a high endemic state (Figure 4). 

 

Figure 4. Evolution of the daily incidence of COVID-19 in Chile. 

 

Comparison of the total daily cases (in red) and their moving averages of order 7 (black line), with the cases of the Metropolitan Region (RM; blue) and the total 
of daily cases of the entire rest of the country (green). 
Source: Data from Health Ministry reports.  

 

As the decrease in the Metropolitan Region cases was asymmetric, a 
Gompertz model was fitted, which has shown a very good fit in 
much of the process; however, in recent days, it has also been losing 
predictive capacity. This is probably because the decrease in the 
number of cases has not occurred naturally due to herd immunity 
but instead associated with a series of interventions that have 
confined a large part of the population33. Currently, the Metropolitan 
region is relatively stable at lower than 10 cases per 100 000 
inhabitants. 

In summary, the models used have been very useful, with different 
objectives at different stages of the epidemic. The short-term model 
is still useful, providing an upper bound on the number of cases each 
week; the SEIR model had a very good predictive capacity of the 
maximum; the stochastic model introduced variability in the 
prediction, and the Gompertz model has had a better predictive 
capacity of the decline in cases. 
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