Abrir sesión | Regístrese | ¿Olvidó su contraseña? | Contacto | English |
Email: Clave:

Medwave se preocupa por su privacidad y la seguridad de sus datos personales.
Para poder enviarle a su dirección de correo electrónico su contraseña, es necesario que ingrese su e-mail.


Práctica clínica
Medwave 2019;19(10):e7729 doi: 10.5867/medwave.2019.10.7729
Resistencia de los antibióticos ß-lactámicos en países latinoamericanos
ß-lactam antibiotics resistance in Latin American countries
María Fernanda Latorre-Barragan, Andrea Cristina Zurita-Leal, Marco Esteban Gudiño Gomezjurado
Referencias | Descargar PDF |
Para Descargar PDF debe Abrir sesión.
Imprimir | A(+) A(-) | Lectura fácil

Palabras clave: antibacterial agents, latin america, epidemiology

Abstract

Ever since antimicrobial activity was observed at the end of the XIX century and antibiotics were produced on a large scale in the ’40s, microorganisms have developed multiple resistance mechanisms, making treatment of infectious diseases difficult. For instance, several Gram-positive and Gram-negative bacteria lowered their sensitivity to ß-Lactam antibiotics as a result of their inadequate use and abuse. For this reason, microbial resistance to these drugs represents an increasing health problem in Latin America due to the emergence of drug-resistant bacterial strains. This review aims to summarize and analyze scientific literature reporting resistance to ß-lactam antibiotics in Latin America. We compiled scientific papers published during the last five years from PubMed, SciELO, and LILACS-BIREME. We found that: (i) it is common to identify resistance genes for ß-lactams in the soil and animal farms, and (ii) over 40% of strains isolated from clinical samples developed resistance against ß-lactam antibiotics.


 

Only Spanish version is available.



Licencia Creative Commons Esta obra de Medwave está bajo una licencia Creative Commons Atribución-NoComercial 3.0 Unported. Esta licencia permite el uso, distribución y reproducción del artículo en cualquier medio, siempre y cuando se otorgue el crédito correspondiente al autor del artículo y al medio en que se publica, en este caso, Medwave.

 

Ever since antimicrobial activity was observed at the end of the XIX century and antibiotics were produced on a large scale in the ’40s, microorganisms have developed multiple resistance mechanisms, making treatment of infectious diseases difficult. For instance, several Gram-positive and Gram-negative bacteria lowered their sensitivity to ß-Lactam antibiotics as a result of their inadequate use and abuse. For this reason, microbial resistance to these drugs represents an increasing health problem in Latin America due to the emergence of drug-resistant bacterial strains. This review aims to summarize and analyze scientific literature reporting resistance to ß-lactam antibiotics in Latin America. We compiled scientific papers published during the last five years from PubMed, SciELO, and LILACS-BIREME. We found that: (i) it is common to identify resistance genes for ß-lactams in the soil and animal farms, and (ii) over 40% of strains isolated from clinical samples developed resistance against ß-lactam antibiotics.

Autores: María Fernanda Latorre-Barragan[1,2], Andrea Cristina Zurita-Leal[3], Marco Esteban Gudiño Gomezjurado[4]

Filiación:
[1] Carrera de Medicina, Facultad de Ciencias Médicas, Universidad Autónoma de los Andes, Ambato-Ecuador
[2] Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato, Ambato, Ecuador
[3] Carrera de Medicina, Facultad de Ciencias de la Salud, Universidad Técnica de Ambato, Ambato, Ecuador
[4] Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Técnica de Ambato, Ambato, Ecuador

E-mail: me.gudino@uta.edu.ec

Correspondencia a:
[1] Carrera de Laboratorio Clínico
Facultad de Ciencias de la Salud
Universidad Técnica de Ambato
Ambato, CP: 180104-Ecuador

Citación: Latorre-Barragan MF, Zurita-Leal AC, Gudiño Gomezjurado ME. ß-lactam antibiotics resistance in Latin American countries. Medwave 2019;19(10):e7729 doi: 10.5867/medwave.2019.10.7729

Fecha de envío: 29/7/2019

Fecha de aceptación: 21/10/2019

Fecha de publicación: 20/11/2019

Origen: No solicitado

Tipo de revisión: Revisado por cuatro pares revisores externos a doble ciego

Ficha PubMed

Comentarios (0)

Nos complace que usted tenga interés en comentar uno de nuestros artículos. Su comentario será publicado inmediatamente. No obstante, Medwave se reserva el derecho a eliminarlo posteriormente si la dirección editorial considera que su comentario es: ofensivo en algún sentido, irrelevante, trivial, contiene errores de lenguaje, contiene arengas políticas, obedece a fines comerciales, contiene datos de alguna persona en particular, o sugiere cambios en el manejo de pacientes que no hayan sido publicados previamente en alguna revista con revisión por pares.

Aún no hay comentarios en este artículo.


Para comentar debe iniciar sesión

Medwave publica las vistas HTML y descargas PDF por artículo, junto con otras métricas de redes sociales.

Se puede producir un retraso de 48 horas en la actualización de las estadísticas.

  1. Nicolaou KC, Rigol S. A brief history of antibiotics and select advances in their synthesis. J Antibiot (Tokyo). 2018 Feb;71(2):153-184. | CrossRef | PubMed |
  2. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus. 2017 Jun 28;(6):e1403. | CrossRef | PubMed |
  3. Mcewen SA, Collignon PJ. x. Microbiol Spectr. 2017;6(2):1-26. | Link |
  4. Jaramillo-Jaramillo AS, Cobo-Ángel CG, Moreno-Tolosa Y, Ceballos-Márquez A, Jaramillo-Jaramillo AS, Cobo-Ángel CG, et al. Resistencia antimicrobiana de Streptococcus agalactiae de origen humano y bovino. CES Med Vet y Zootec. 2018;13(1):62-79. | Link |
  5. Zareifopoulos N, Panayiotakopoulos G. Neuropsychiatric Effects of Antimicrobial Agents. Clin Drug Investig. 2017 May;37(5):423-437. | CrossRef | PubMed |
  6. Gudiño ME, Blanco-Touriñán N, Arbona V, Gómez-Cadenas A, Blázquez MA, Navarro-García F. β-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana. Plant Cell Physiol. 2018 Oct 1;59(10):2086-2098. | CrossRef | PubMed |
  7. Martínez JL. Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science (80- ). 2008;321(5887):365–7. | CrossRef |
  8. Sabtu N, Enoch DA, Brown NM. Antibiotic resistance: what, why, where, when and how? Br Med Bull. 2015;116:105-13. | CrossRef | PubMed |
  9. Chokshi A, Sifri Z, Cennimo D, Horng H. Global Contributors to Antibiotic Resistance. J Glob Infect Dis. 2019 Jan-Mar;11(1):36-42. | CrossRef | PubMed |
  10. Epand RM, Walker C, Epand RF, Magarvey NA. Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta. 2016 May;1858(5):980-7. | CrossRef | PubMed |
  11. Zhou P, Zhao J. Structure, inhibition, and regulation of essential lipid A enzymes. Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Nov;1862(11):1424-1438. | CrossRef | PubMed |
  12. McCoy LS, Xie Y, Tor Y. Antibiotics that target protein synthesis. Wiley Interdiscip Rev RNA. 2011 Mar-Apr;2(2):209-32. | CrossRef | PubMed |
  13. Temiakov D, Zenkin N, Vassylyeva MN, Perederina A, Tahirov TH, Kashkina E, et al. Structural basis of transcription inhibition by antibiotic streptolydigin. Mol Cell. 2005 Sep 2;19(5):655-66. | PubMed |
  14. Ehmann DE, Lahiri SD. Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Curr Opin Pharmacol. 2014 Oct;18:76-83. | CrossRef | PubMed |
  15. Romaniuk JAH, Cegelski L. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos Trans R Soc B Biol Sci. 2015;370(1679). | CrossRef |
  16. Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014 Dec 4;159(6):1300-11. | CrossRef | PubMed |
  17. Etebu E, Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int J Appl Microbiol Biotechnol Res. 2016;4:90-101. | Link |
  18. Nagaraja V, Godbole AA, Henderson SR, Maxwell A. DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov Today. 2017 Mar;22(3):510-518. | CrossRef | PubMed |
  19. van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. J Antimicrob Chemother. 2017 May 1;72(5):1275-1284. | CrossRef | PubMed |
  20. Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas). /2011;47(3):137-46. | CrossRef | PubMed |
  21. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015 Jan;13(1):42-51. | CrossRef | PubMed |
  22. Masi M, Réfregiers M, Pos KM, Pagès JM. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat Microbiol. 2017 Feb 22;2:17001. | CrossRef | PubMed |
  23. Codjoe F, Donkor E. Carbapenem Resistance: A Review. Med Sci. 2017;6(1):1. | CrossRef |
  24. Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018 Sep 12;31(4). pii: e00020-18. | CrossRef | PubMed |
  25. Giudice Barbagelata MG, Pardo Casaretto L, Mota Ciganda MI, Gutiérrez Correa C, Algorta Rusiñol G, Varela Pensado G. Staphylococcus aureus portador del gen mecA sensible a oxacilina (OS-MRSA): otro desafío para los laboratorios de microbiología. Rev MEDICA DEL URUGUAY. 2018;34(4):240-3. | CrossRef |
  26. Bassetti M, Carnelutti A, Righi E. The role of methicillin-resistant Staphylococcus aureus in skin and soft tissue infections. Curr Opin Infect Dis. 2017;30(2):150-7. | CrossRef | PubMed |
  27. Frost I, Van Boeckel TP, Pires J, Craig J, Laxminarayan R. Global Geographic Trends in Antimicrobial Resistance: The Role of International Travel. J Travel Med. 2019 May 22. pii: taz036. | CrossRef | PubMed |
  28. Seas C, Garcia C, Salles MJ, Labarca J, Luna C, Alvarez-Moreno C, et al. Staphylococcus aureus bloodstream infections in Latin America: Results of a multinational prospective cohort study. J Antimicrob Chemother. 2018;73(1):212-22. | CrossRef |
  29. Biedenbach DJ, Alm RA, Lahiri SD, Reiszner E, Hoban DJ, Sahm DF, et al. In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolated in 2012 from Asia-Pacific Countries as Part of the AWARE Surveillance Program. Antimicrob Agents Chemother. 2015 Oct 26;60(1):343-7. | CrossRef | PubMed |
  30. Planet PJ, Diaz L, Rios R, Arias CA. Global Spread of the Community-Associated Methicillin-Resistant Staphylococcus aureus USA300 Latin American Variant. J Infect Dis. 2016 Nov 15;214(10):1609-1610. | PubMed |
  31. Duplessis C, Crum-Cianflone NF. Ceftaroline: A New Cephalosporin with Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). Clin Med Rev Ther. 2011 Feb 10;3. pii: a2466. | PubMed |
  32. Hoban D, Biedenbach D, Sahm D, Reiszner E, Iaconis J. Activity of ceftaroline and comparators against pathogens isolated from skin and soft tissue infections in Latin America - results of AWARE surveillance 2012. Braz J Infect Dis. 2015 Nov-Dec;19(6):596-603. | CrossRef | PubMed |
  33. Choo EJ, Chambers HF. Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Infect Chemother. 2016 Dec;48(4):267-273. | CrossRef | PubMed |
  34. Sader HS, Castanheira M, Farrell DJ, Flamm RK, Mendes RE, Jones RN. Tigecycline antimicrobial activity tested against clinical bacteria from Latin American medical centres: results from SENTRY Antimicrobial Surveillance Program (2011-2014). Int J Antimicrob Agents. 2016 Aug;48(2):144-50. | CrossRef | PubMed |
  35. Vega S, Dowzicky MJ. Antimicrobial susceptibility among Gram-positive and Gram-negative organisms collected from the Latin American region between 2004 and 2015 as part of the Tigecycline Evaluation and Surveillance Trial. Ann Clin Microbiol Antimicrob. 2017;16(1):1–16. | CrossRef |
  36. Damodaran SE, Madhan S. Telavancin: A novel lipoglycopeptide antibiotic. J Pharmacol Pharmacother. 2011 Apr;2(2):135-7. | CrossRef | PubMed |
  37. Mendes RE, Sader HS, Smart JI, Castanheira M, Flamm RK. Update of the activity of telavancin against a global collection of Staphylococcus aureus causing bacteremia, including endocarditis (2011-2014). Eur J Clin Microbiol Infect Dis. 2017 Jun;36(6):1013-1017. | CrossRef | PubMed |
  38. Hulten KG. The changing epidemiology of pneumococcal diseases. Lancet Infect Dis. 2018 Sep;18(9):929-930. | CrossRef | PubMed |
  39. Cillóniz C, Garcia-Vidal C, Ceccato A, Torres A. Antimicrobial Resistance Among Streptococcus pneumoniae. En: Antimicrobial Resistance in the 21st Century. Second. Gewerbestrasse: Springer; 2018:13–39. | Link |
  40. Agudelo CI, DeAntonio R, Castañeda E. Authors reply "Streptococcus pneumoniae serotype 19A in Latin America and the Caribbean 2010-2015: A systematic review and a time series analysis". Vaccine. 2019 Jun 6;37(26):3387. | CrossRef | PubMed |
  41. Hawkins P, Mercado E, Chochua S, Castillo ME, Reyes I, Chaparro E, et al. Key features of invasive pneumococcal isolates recovered in Lima, Peru determined through whole genome sequencing. Int J Med Microbiol. 2017 Oct;307(7):415-421. | CrossRef | PubMed |
  42. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front Microbiol. 2019 Apr 1;10:539. | CrossRef | PubMed |
  43. Guzmán-Blanco M, Labarca JA, Villegas MV, Gotuzzo E; Latin America Working Group on Bacterial Resistance. Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis. 2014 Jul-Aug;18(4):421-33. | CrossRef | PubMed |
  44. Kehl SC, Dowzicky MJ. Global assessment of antimicrobial susceptibility among Gram-negative organisms collected from pediatric patients between 2004 and 2012: results from the Tigecycline Evaluation and Surveillance Trial. J Clin Microbiol. 2015 Apr;53(4):1286-93. | CrossRef | PubMed |
  45. Jiménez A, Alvarado A, Gómez F, Carrero G, Fajardo C. [Risk factors associated with the isolation of extended spectrum betalactamases producing Escherichia coli or Klebsiella pneumoniae in a tertiary care hospital in Colombia]. Biomedica. 2014 Apr;34 Suppl 1:16-22. | CrossRef | PubMed |
  46. Pereira A, Fariña N, de Vega M, González P, Rodríguez F, de Figueredo L, et al. Enterobacterias productoras de Betalactamasas de espectro extendido aisladas de pacientes ambulatorios y hospitalizados en un Laboratorio privado de Asunción Extended-spectrum-Betalactamases producing enterobacteriaceae isolated from outpatient and hospit. Investig Cienc Salud Investig Cienc Salud. 2016;1414(11):17-2417. | CrossRef |
  47. Kazmierczak KM, Lob SH, Hoban DJ, Hackel MA, Badal RE, Bouchillon SK. Characterization of extended-spectrum beta-lactamases and antimicrobial resistance of Klebsiella pneumoniae in intra-abdominal infection isolates in Latin America, 2008-2012. Results of the Study for Monitoring Antimicrobial Resistance Trends. Diagn Microbiol Infect Dis. 2015 Jul;82(3):209-14. | CrossRef | PubMed |
  48. Dropa M, Balsalobre LC, Lincopan N, Matté GR, Matté MH. Complex class 1 integrons harboring CTX-M-2-encoding genes in clinical Enterobacteriaceae from a hospital in Brazil. J Infect Dev Ctries. 2015 Aug 29;9(8):890-7. | CrossRef | PubMed |
  49. Karlowsky JA, Hoban DJ, Hackel MA, Lob SH, Sahm DF. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013-2015. Braz J Infect Dis. 2017 May - Jun;21(3):343-348. | CrossRef | PubMed |
  50. Furlan JPR, Stehling EG. Detection of β-lactamase encoding genes in feces, soil and water from a Brazilian pig farm. Environ Monit Assess. 2018 Jan 10;190(2):76. | CrossRef | PubMed |
  51. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev. 2017 Jan;30(1):409-447. | CrossRef | PubMed |
  52. Levy-Blitchtein S, Roca I, Plasencia-Rebata S, Vicente-Taboada W, Velásquez-Pomar J, Muñoz L, et al. Emergence and spread of carbapenem-resistant Acinetobacter baumannii international clones II and III in Lima, Peru. Emerg Microbes Infect. 2018 Jul 4;7(1):119. | CrossRef | PubMed |
  53. Gonzalez-Villoria AM, Valverde-Garduno V. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen. J Pathog. 2016;2016:7318075. | CrossRef | PubMed |
  54. Logan LK, Medernach RL, Rispens JR, Marshall SH, Hujer AM, Domitrovic TN, et al. Community Origins and Regional Differences Highlight Risk of Plasmid-mediated Fluoroquinolone Resistant Enterobacteriaceae Infections in Children. Pediatr Infect Dis J. 2019 Jun;38(6):595-599. | CrossRef | PubMed |
  55. Kazmierczak KM, Biedenbach DJ, Hackel M, Rabine S, de Jonge BL, Bouchillon SK, et al. Global Dissemination of blaKPC into Bacterial Species beyond Klebsiella pneumoniae and In Vitro Susceptibility to Ceftazidime-Avibactam and Aztreonam-Avibactam. Antimicrob Agents Chemother. 2016 Jul 22;60(8):4490-500. | CrossRef | PubMed |
  56. Bado I, Papa-Ezdra R, Delgado-Blas JF, Gaudio M, Gutiérrez C, Cordeiro NF, et al. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii in the Intensive Care Unit of Uruguay's University Hospital Identifies the First rmtC Gene in the Species. Microb Drug Resist. 2018 Sep;24(7):1012-1019. | CrossRef | PubMed |
  57. Marquez-Ortiz RA, Haggerty L, Olarte N, Duarte C, Garza-Ramos U, Silva-Sanchez J, et al. Genomic Epidemiology of NDM-1-Encoding Plasmids in Latin American Clinical Isolates Reveals Insights into the Evolution of Multidrug Resistance. Genome Biol Evol. 2017 Jun 1;9(6):1725-1741. | CrossRef | PubMed |
  58. Jones-Dias D, Manageiro V, Caniça M. Influence of agricultural practice on mobile bla genes: IncI1-bearing CTX-M, SHV, CMY and TEM in Escherichia coli from intensive farming soils. Environ Microbiol. 2016 Jan;18(1):260-72. | CrossRef | PubMed |
  59. Furlan JPR, Stehling EG. Detection of β-lactamase encoding genes in feces, soil and water from a Brazilian pig farm. Environ Monit Assess. 2018 Jan 10;190(2):76. | CrossRef | PubMed |
  60. Pitondo-Silva A, Devechio BB, Moretto JA, Stehling EG. High prevalence of bla(VIM-1) gene in bacteria from Brazilian soil. Can J Microbiol. 2016 Oct;62(10):820-826. | PubMed |
  61. Braykov NP, Eisenberg JN, Grossman M, Zhang L, Vasco K, Cevallos W, et al. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador. mSphere. 2016 Feb 10;1(1). pii: e00021-15. | CrossRef | PubMed |
  62. Guo X, Stedtfeld RD, Hedman H, Eisenberg JNS, Trueba G, Yin D, et al. Antibiotic Resistome Associated with Small-Scale Poultry Production in Rural Ecuador. Environ Sci Technol. 2018 Aug 7;52(15):8165-8172. | CrossRef | PubMed |
  63. Moser KA, Zhang L, Spicknall I, Braykov NP, Levy K, Marrs CF, et al. The Role of Mobile Genetic Elements in the Spread of Antimicrobial-Resistant Escherichia coli From Chickens to Humans in Small-Scale Production Poultry Operations in Rural Ecuador. Am J Epidemiol. 2018 Mar 1;187(3):558-567. | CrossRef | PubMed |
  64. Hedman HD, Eisenberg JNS, Vasco KA, Blair CN, Trueba G, Berrocal VJ, et al. High Prevalence of Extended-Spectrum Beta-Lactamase CTX-M-Producing Escherichia coli in Small-Scale Poultry Farming in Rural Ecuador. Am J Trop Med Hyg. 2019 Feb;100(2):374-376. | CrossRef | PubMed |
  65. Vinueza-Burgos C, Baquero M, Medina J, De Zutter L. Occurrence, genotypes and antimicrobial susceptibility of Salmonella collected from the broiler production chain within an integrated poultry company. Int J Food Microbiol. 2019 Jun 16;299:1-7. | CrossRef | PubMed |
  66. Maciel MJ, Machado G, Avancini CAM. Investigation of resistance of Salmonella spp. isolated from products and raw material of animal origin (swine and poultry)to antibiotics and disinfectants. Rev Bras Saúde Prod Anim. 2019;20:1-13. | CrossRef |
  67. Huamán-Chacón LE, Edgar G-E. Escherichia coli Productor de betalactamasas de espectro extendido en pollos para consumo humano. Rev Peru Med Exp Salud Publica. 2019;36(2):361-2. | CrossRef |
  68. Carvajal B. E, Hernández A. W, Torres C. M, López V. D, Rueda G. E, Vásquez de Díaz MC. Resistencia antimicrobiana de cepas de Escherichia coli aisladas de contenidos de bursa de Fabricio de aves para engorde. Rev Investig Vet del Perú. 2019;30(1):430-7. | CrossRef |
  69. Ferreira JC, Penha Filho RAC, Andrade LN, Berchieri Junior A, Darini ALC. Diversity of plasmids harboring bla(CMY-2) in multidrug-resistant Escherichia coli isolated from poultry in Brazil. Diagn Microbiol Infect Dis. 2017 Aug;88(4):361-364. | CrossRef | PubMed |
  70. Rapoport M, Faccone D, Pasteran F, Ceriana P, Albornoz E, Petroni A, et al. First Description of mcr-1-Mediated Colistin Resistance in Human Infections Caused by Escherichia coli in Latin America. Antimicrob Agents Chemother. 2016 Jun 20;60(7):4412-3. | CrossRef | PubMed |
  71. Quiroga C, Nastro M, Di Conza J. Current scenario of plasmid-mediated colistin resistance in Latin America. Rev Argent Microbiol. 2019 Jan - Mar;51(1):93-100. | CrossRef | PubMed |
Nicolaou KC, Rigol S. A brief history of antibiotics and select advances in their synthesis. J Antibiot (Tokyo). 2018 Feb;71(2):153-184. | CrossRef | PubMed |

Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus. 2017 Jun 28;(6):e1403. | CrossRef | PubMed |

Mcewen SA, Collignon PJ. x. Microbiol Spectr. 2017;6(2):1-26. | Link |

Jaramillo-Jaramillo AS, Cobo-Ángel CG, Moreno-Tolosa Y, Ceballos-Márquez A, Jaramillo-Jaramillo AS, Cobo-Ángel CG, et al. Resistencia antimicrobiana de Streptococcus agalactiae de origen humano y bovino. CES Med Vet y Zootec. 2018;13(1):62-79. | Link |

Zareifopoulos N, Panayiotakopoulos G. Neuropsychiatric Effects of Antimicrobial Agents. Clin Drug Investig. 2017 May;37(5):423-437. | CrossRef | PubMed |

Gudiño ME, Blanco-Touriñán N, Arbona V, Gómez-Cadenas A, Blázquez MA, Navarro-García F. β-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana. Plant Cell Physiol. 2018 Oct 1;59(10):2086-2098. | CrossRef | PubMed |

Martínez JL. Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science (80- ). 2008;321(5887):365–7. | CrossRef |

Sabtu N, Enoch DA, Brown NM. Antibiotic resistance: what, why, where, when and how? Br Med Bull. 2015;116:105-13. | CrossRef | PubMed |

Chokshi A, Sifri Z, Cennimo D, Horng H. Global Contributors to Antibiotic Resistance. J Glob Infect Dis. 2019 Jan-Mar;11(1):36-42. | CrossRef | PubMed |

Epand RM, Walker C, Epand RF, Magarvey NA. Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta. 2016 May;1858(5):980-7. | CrossRef | PubMed |

Zhou P, Zhao J. Structure, inhibition, and regulation of essential lipid A enzymes. Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Nov;1862(11):1424-1438. | CrossRef | PubMed |

McCoy LS, Xie Y, Tor Y. Antibiotics that target protein synthesis. Wiley Interdiscip Rev RNA. 2011 Mar-Apr;2(2):209-32. | CrossRef | PubMed |

Temiakov D, Zenkin N, Vassylyeva MN, Perederina A, Tahirov TH, Kashkina E, et al. Structural basis of transcription inhibition by antibiotic streptolydigin. Mol Cell. 2005 Sep 2;19(5):655-66. | PubMed |

Ehmann DE, Lahiri SD. Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Curr Opin Pharmacol. 2014 Oct;18:76-83. | CrossRef | PubMed |

Romaniuk JAH, Cegelski L. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos Trans R Soc B Biol Sci. 2015;370(1679). | CrossRef |

Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014 Dec 4;159(6):1300-11. | CrossRef | PubMed |

Etebu E, Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int J Appl Microbiol Biotechnol Res. 2016;4:90-101. | Link |

Nagaraja V, Godbole AA, Henderson SR, Maxwell A. DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov Today. 2017 Mar;22(3):510-518. | CrossRef | PubMed |

van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. J Antimicrob Chemother. 2017 May 1;72(5):1275-1284. | CrossRef | PubMed |

Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas). /2011;47(3):137-46. | CrossRef | PubMed |

Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015 Jan;13(1):42-51. | CrossRef | PubMed |

Masi M, Réfregiers M, Pos KM, Pagès JM. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat Microbiol. 2017 Feb 22;2:17001. | CrossRef | PubMed |

Codjoe F, Donkor E. Carbapenem Resistance: A Review. Med Sci. 2017;6(1):1. | CrossRef |

Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018 Sep 12;31(4). pii: e00020-18. | CrossRef | PubMed |

Giudice Barbagelata MG, Pardo Casaretto L, Mota Ciganda MI, Gutiérrez Correa C, Algorta Rusiñol G, Varela Pensado G. Staphylococcus aureus portador del gen mecA sensible a oxacilina (OS-MRSA): otro desafío para los laboratorios de microbiología. Rev MEDICA DEL URUGUAY. 2018;34(4):240-3. | CrossRef |

Bassetti M, Carnelutti A, Righi E. The role of methicillin-resistant Staphylococcus aureus in skin and soft tissue infections. Curr Opin Infect Dis. 2017;30(2):150-7. | CrossRef | PubMed |

Frost I, Van Boeckel TP, Pires J, Craig J, Laxminarayan R. Global Geographic Trends in Antimicrobial Resistance: The Role of International Travel. J Travel Med. 2019 May 22. pii: taz036. | CrossRef | PubMed |

Seas C, Garcia C, Salles MJ, Labarca J, Luna C, Alvarez-Moreno C, et al. Staphylococcus aureus bloodstream infections in Latin America: Results of a multinational prospective cohort study. J Antimicrob Chemother. 2018;73(1):212-22. | CrossRef |

Biedenbach DJ, Alm RA, Lahiri SD, Reiszner E, Hoban DJ, Sahm DF, et al. In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolated in 2012 from Asia-Pacific Countries as Part of the AWARE Surveillance Program. Antimicrob Agents Chemother. 2015 Oct 26;60(1):343-7. | CrossRef | PubMed |

Planet PJ, Diaz L, Rios R, Arias CA. Global Spread of the Community-Associated Methicillin-Resistant Staphylococcus aureus USA300 Latin American Variant. J Infect Dis. 2016 Nov 15;214(10):1609-1610. | PubMed |

Duplessis C, Crum-Cianflone NF. Ceftaroline: A New Cephalosporin with Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). Clin Med Rev Ther. 2011 Feb 10;3. pii: a2466. | PubMed |

Hoban D, Biedenbach D, Sahm D, Reiszner E, Iaconis J. Activity of ceftaroline and comparators against pathogens isolated from skin and soft tissue infections in Latin America - results of AWARE surveillance 2012. Braz J Infect Dis. 2015 Nov-Dec;19(6):596-603. | CrossRef | PubMed |

Choo EJ, Chambers HF. Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Infect Chemother. 2016 Dec;48(4):267-273. | CrossRef | PubMed |

Sader HS, Castanheira M, Farrell DJ, Flamm RK, Mendes RE, Jones RN. Tigecycline antimicrobial activity tested against clinical bacteria from Latin American medical centres: results from SENTRY Antimicrobial Surveillance Program (2011-2014). Int J Antimicrob Agents. 2016 Aug;48(2):144-50. | CrossRef | PubMed |

Vega S, Dowzicky MJ. Antimicrobial susceptibility among Gram-positive and Gram-negative organisms collected from the Latin American region between 2004 and 2015 as part of the Tigecycline Evaluation and Surveillance Trial. Ann Clin Microbiol Antimicrob. 2017;16(1):1–16. | CrossRef |

Damodaran SE, Madhan S. Telavancin: A novel lipoglycopeptide antibiotic. J Pharmacol Pharmacother. 2011 Apr;2(2):135-7. | CrossRef | PubMed |

Mendes RE, Sader HS, Smart JI, Castanheira M, Flamm RK. Update of the activity of telavancin against a global collection of Staphylococcus aureus causing bacteremia, including endocarditis (2011-2014). Eur J Clin Microbiol Infect Dis. 2017 Jun;36(6):1013-1017. | CrossRef | PubMed |

Hulten KG. The changing epidemiology of pneumococcal diseases. Lancet Infect Dis. 2018 Sep;18(9):929-930. | CrossRef | PubMed |

Cillóniz C, Garcia-Vidal C, Ceccato A, Torres A. Antimicrobial Resistance Among Streptococcus pneumoniae. En: Antimicrobial Resistance in the 21st Century. Second. Gewerbestrasse: Springer; 2018:13–39. | Link |

Agudelo CI, DeAntonio R, Castañeda E. Authors reply "Streptococcus pneumoniae serotype 19A in Latin America and the Caribbean 2010-2015: A systematic review and a time series analysis". Vaccine. 2019 Jun 6;37(26):3387. | CrossRef | PubMed |

Hawkins P, Mercado E, Chochua S, Castillo ME, Reyes I, Chaparro E, et al. Key features of invasive pneumococcal isolates recovered in Lima, Peru determined through whole genome sequencing. Int J Med Microbiol. 2017 Oct;307(7):415-421. | CrossRef | PubMed |

Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front Microbiol. 2019 Apr 1;10:539. | CrossRef | PubMed |

Guzmán-Blanco M, Labarca JA, Villegas MV, Gotuzzo E; Latin America Working Group on Bacterial Resistance. Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis. 2014 Jul-Aug;18(4):421-33. | CrossRef | PubMed |

Kehl SC, Dowzicky MJ. Global assessment of antimicrobial susceptibility among Gram-negative organisms collected from pediatric patients between 2004 and 2012: results from the Tigecycline Evaluation and Surveillance Trial. J Clin Microbiol. 2015 Apr;53(4):1286-93. | CrossRef | PubMed |

Jiménez A, Alvarado A, Gómez F, Carrero G, Fajardo C. [Risk factors associated with the isolation of extended spectrum betalactamases producing Escherichia coli or Klebsiella pneumoniae in a tertiary care hospital in Colombia]. Biomedica. 2014 Apr;34 Suppl 1:16-22. | CrossRef | PubMed |

Pereira A, Fariña N, de Vega M, González P, Rodríguez F, de Figueredo L, et al. Enterobacterias productoras de Betalactamasas de espectro extendido aisladas de pacientes ambulatorios y hospitalizados en un Laboratorio privado de Asunción Extended-spectrum-Betalactamases producing enterobacteriaceae isolated from outpatient and hospit. Investig Cienc Salud Investig Cienc Salud. 2016;1414(11):17-2417. | CrossRef |

Kazmierczak KM, Lob SH, Hoban DJ, Hackel MA, Badal RE, Bouchillon SK. Characterization of extended-spectrum beta-lactamases and antimicrobial resistance of Klebsiella pneumoniae in intra-abdominal infection isolates in Latin America, 2008-2012. Results of the Study for Monitoring Antimicrobial Resistance Trends. Diagn Microbiol Infect Dis. 2015 Jul;82(3):209-14. | CrossRef | PubMed |

Dropa M, Balsalobre LC, Lincopan N, Matté GR, Matté MH. Complex class 1 integrons harboring CTX-M-2-encoding genes in clinical Enterobacteriaceae from a hospital in Brazil. J Infect Dev Ctries. 2015 Aug 29;9(8):890-7. | CrossRef | PubMed |

Karlowsky JA, Hoban DJ, Hackel MA, Lob SH, Sahm DF. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013-2015. Braz J Infect Dis. 2017 May - Jun;21(3):343-348. | CrossRef | PubMed |

Furlan JPR, Stehling EG. Detection of β-lactamase encoding genes in feces, soil and water from a Brazilian pig farm. Environ Monit Assess. 2018 Jan 10;190(2):76. | CrossRef | PubMed |

Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev. 2017 Jan;30(1):409-447. | CrossRef | PubMed |

Levy-Blitchtein S, Roca I, Plasencia-Rebata S, Vicente-Taboada W, Velásquez-Pomar J, Muñoz L, et al. Emergence and spread of carbapenem-resistant Acinetobacter baumannii international clones II and III in Lima, Peru. Emerg Microbes Infect. 2018 Jul 4;7(1):119. | CrossRef | PubMed |

Gonzalez-Villoria AM, Valverde-Garduno V. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen. J Pathog. 2016;2016:7318075. | CrossRef | PubMed |

Logan LK, Medernach RL, Rispens JR, Marshall SH, Hujer AM, Domitrovic TN, et al. Community Origins and Regional Differences Highlight Risk of Plasmid-mediated Fluoroquinolone Resistant Enterobacteriaceae Infections in Children. Pediatr Infect Dis J. 2019 Jun;38(6):595-599. | CrossRef | PubMed |

Kazmierczak KM, Biedenbach DJ, Hackel M, Rabine S, de Jonge BL, Bouchillon SK, et al. Global Dissemination of blaKPC into Bacterial Species beyond Klebsiella pneumoniae and In Vitro Susceptibility to Ceftazidime-Avibactam and Aztreonam-Avibactam. Antimicrob Agents Chemother. 2016 Jul 22;60(8):4490-500. | CrossRef | PubMed |

Bado I, Papa-Ezdra R, Delgado-Blas JF, Gaudio M, Gutiérrez C, Cordeiro NF, et al. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii in the Intensive Care Unit of Uruguay's University Hospital Identifies the First rmtC Gene in the Species. Microb Drug Resist. 2018 Sep;24(7):1012-1019. | CrossRef | PubMed |

Marquez-Ortiz RA, Haggerty L, Olarte N, Duarte C, Garza-Ramos U, Silva-Sanchez J, et al. Genomic Epidemiology of NDM-1-Encoding Plasmids in Latin American Clinical Isolates Reveals Insights into the Evolution of Multidrug Resistance. Genome Biol Evol. 2017 Jun 1;9(6):1725-1741. | CrossRef | PubMed |

Jones-Dias D, Manageiro V, Caniça M. Influence of agricultural practice on mobile bla genes: IncI1-bearing CTX-M, SHV, CMY and TEM in Escherichia coli from intensive farming soils. Environ Microbiol. 2016 Jan;18(1):260-72. | CrossRef | PubMed |

Furlan JPR, Stehling EG. Detection of β-lactamase encoding genes in feces, soil and water from a Brazilian pig farm. Environ Monit Assess. 2018 Jan 10;190(2):76. | CrossRef | PubMed |

Pitondo-Silva A, Devechio BB, Moretto JA, Stehling EG. High prevalence of bla(VIM-1) gene in bacteria from Brazilian soil. Can J Microbiol. 2016 Oct;62(10):820-826. | PubMed |

Braykov NP, Eisenberg JN, Grossman M, Zhang L, Vasco K, Cevallos W, et al. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador. mSphere. 2016 Feb 10;1(1). pii: e00021-15. | CrossRef | PubMed |

Guo X, Stedtfeld RD, Hedman H, Eisenberg JNS, Trueba G, Yin D, et al. Antibiotic Resistome Associated with Small-Scale Poultry Production in Rural Ecuador. Environ Sci Technol. 2018 Aug 7;52(15):8165-8172. | CrossRef | PubMed |

Moser KA, Zhang L, Spicknall I, Braykov NP, Levy K, Marrs CF, et al. The Role of Mobile Genetic Elements in the Spread of Antimicrobial-Resistant Escherichia coli From Chickens to Humans in Small-Scale Production Poultry Operations in Rural Ecuador. Am J Epidemiol. 2018 Mar 1;187(3):558-567. | CrossRef | PubMed |

Hedman HD, Eisenberg JNS, Vasco KA, Blair CN, Trueba G, Berrocal VJ, et al. High Prevalence of Extended-Spectrum Beta-Lactamase CTX-M-Producing Escherichia coli in Small-Scale Poultry Farming in Rural Ecuador. Am J Trop Med Hyg. 2019 Feb;100(2):374-376. | CrossRef | PubMed |

Vinueza-Burgos C, Baquero M, Medina J, De Zutter L. Occurrence, genotypes and antimicrobial susceptibility of Salmonella collected from the broiler production chain within an integrated poultry company. Int J Food Microbiol. 2019 Jun 16;299:1-7. | CrossRef | PubMed |

Maciel MJ, Machado G, Avancini CAM. Investigation of resistance of Salmonella spp. isolated from products and raw material of animal origin (swine and poultry)to antibiotics and disinfectants. Rev Bras Saúde Prod Anim. 2019;20:1-13. | CrossRef |

Huamán-Chacón LE, Edgar G-E. Escherichia coli Productor de betalactamasas de espectro extendido en pollos para consumo humano. Rev Peru Med Exp Salud Publica. 2019;36(2):361-2. | CrossRef |

Carvajal B. E, Hernández A. W, Torres C. M, López V. D, Rueda G. E, Vásquez de Díaz MC. Resistencia antimicrobiana de cepas de Escherichia coli aisladas de contenidos de bursa de Fabricio de aves para engorde. Rev Investig Vet del Perú. 2019;30(1):430-7. | CrossRef |

Ferreira JC, Penha Filho RAC, Andrade LN, Berchieri Junior A, Darini ALC. Diversity of plasmids harboring bla(CMY-2) in multidrug-resistant Escherichia coli isolated from poultry in Brazil. Diagn Microbiol Infect Dis. 2017 Aug;88(4):361-364. | CrossRef | PubMed |

Rapoport M, Faccone D, Pasteran F, Ceriana P, Albornoz E, Petroni A, et al. First Description of mcr-1-Mediated Colistin Resistance in Human Infections Caused by Escherichia coli in Latin America. Antimicrob Agents Chemother. 2016 Jun 20;60(7):4412-3. | CrossRef | PubMed |

Quiroga C, Nastro M, Di Conza J. Current scenario of plasmid-mediated colistin resistance in Latin America. Rev Argent Microbiol. 2019 Jan - Mar;51(1):93-100. | CrossRef | PubMed |